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Reliability prediction steps

1.

Define the boundary of the system under analysis—what counts
as part of the system, what does not?

Sketch a preliminary reliability block diagram (RDB) to define
“components” of the system (which could be events or functions)

Perform a failure modes and effects analysis (FMEA)

— Iterate with RDB to insure all components are covered

— Estimate component failure probabilities (point estimates
or probability distributions)

Perform a fault tree analysis (FTA)

5. Quantify results from FTA and RBD

NNNNNNN

Design/initiate component reliability, aging and compatibility tests
— And/or utilize data from previous testing
— Update reliability estimates if necessary

Iterate if necessary (typically will be necessary)
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Defining our terms

* Failure Mode: One of the ways in which a component

or subsystem can fail.
— One of its weaknesses, deficiencies, or defects

* Failure effect: For a given failure mode, what are the consequences
to the system? How critical are they? Is repair or workaround possible?

* Failure cause: Is it random? Caused by something wearing our?
Caused by external stress (heat, mechanical shock, radiation, etc.)?

Exercise
What other information is useful regarding failure modes?

Pick a fairly simple component (could be anything you have knowledge of,
from a weapon component to an automobile tire)

— List all the failure modes, with their effects

— What can cause each failure?

— Order your list by by criticality/severity
S
» Los Alamos
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Analyzing failure modes

* We have many tools at our disposal—statistical, and just commonsense

* We may care about the frequency of the failure, the severity, or the
chance of detection

To be discussed:
* Reliability block diagrams (RDB)

* Failure mode and effect analysis (FMEA)
— Or Failure mode, effect and criticality analysis (FMECA)

* Fault tree analysis (FTA)
— And success tree analysis

* Monte Carlo simulation and Bayesian analysis for quantifying
uncertainty about system reliability

* All of these require eliciting information from subject matter experts,
and we discuss how this is done
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Reliability block diagram (RDB)

Bl

B2

* Structural decomposition of the system

Rg=1-(1-Rp)(l1 —Rp,)
R =R, xRy xR- xRy

System

— May be performed at varying levels of granularity
— Can be done hierarchically— decompose single input/single output

block into subblocks

— May include interfaces (e.g., cables) as components

» Alternative to, or in addition to, fault tree

 Component reliabilities can be point estimates or distributions

— Often captured using FMEA (next slide)

* RDB analysis may miss interactions and “common cause” failures
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Failure modes and effects analysis (FMEA)

Failure Mode Effect/Severity | Probability

* Thorough FMEA helps insure consideration of all failure modes

* May include failures caused by defects introduced in production
or assembly

* May include common-cause failure modes (e.g., common power bus)

* Failure mode probabilities based on component tests, industry
databases, historical experience, elicitation of expert knowledge, etc.

* Could also capture sources of data to reduce uncertainty, mitigations
for failure modes, etc.

* Elicitation of failure modes and probabilities from subject matter experts
~ is labor-intensive, but critical
al
» Los Alamos
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Elicitation of expert judgment

* Elicitation: A structured process for
gathering quantitative information and
uncertainty estimates on a given topic
from informed experts, in a form useful
for analysis or decision-making

» Used to supplement “hard” quantitative
data with subjective information from
subject-matter experts

— Or when no quantitative data exist “I know nothing about the subject,
but I'm happy to give you my expert opinion.”

« Examples of information elicited:
— Probability of an event, odds on an event
— Rank ordering of probabilities for different events
— Uncertainty (error bar, probability distribution)
— Ratio of odds or probabilities for two events
— Relative or absolute cost or benefit of an event

» Los Alamos 7
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The elicitation process

1. What information is needed? What specific questions
need to be answered? In what form (point estimate,
distribution, range, . .. )?

2. What expertise is needed? Which experts can answer
these questions? Can we elicit quantitative information
from them?

3. Do the experts have biases? Can we adjust for biases?

. What process should be used (questionnaire, individual interviews,
Delphi, interactive meeting, ...)?

AN

o

Do we need a practice run? What are the logistics of the elicitation?

Can we aggregate data from multiple experts? What if they
disagree?

o

/. How do we quantify uncertainty in the expert judgments?

ay See Meyer and Booker (1991) for process details.
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Fault tree/success tree analysis

* Functional (event-based) decomposition of the system
— Events may be failures (fault tree) or successes (success tree)
— May be performed at varying levels of granularity
— Can be done hierarchically— decompose events into component
events

* If the “events” are component failures, then the tree is isomorphic
to an equivalent RDB

e Use fault tree or Bl
success tree, whichever A C D
makes best sense B2

(see next slide)

ONICI® System success if
* The “tree” can be a

. _ AA(B1vB2)ACAD
directed acyclic graph .
to capture common Rg=1-(1-Rg)(1—Rpy)

cause failures ®D (3D Rsystem = Ra X Rg X Re X Ry

Alamos 9
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Fault tree and equivalent success tree

Success if AA(B1vB2)ACAD Failure if —-Av(—B1A—B2)v—=Cv—-D

Success Failure

® |©0® é@

Rg=1-(1-Rg)(1 —Rp,) Pp=Pp; x Pg, =1 -Rg

RSystem - RA X I:QB X RC X I:QD PSyStem =1- Rsystem -
a I -1 =Py -Pp)1-Pc)1-Pp)
Los Alamos 10
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Fault tree and equivalent RBD

* Assume here that events in the fault tree are failures of components
in the reliability block diagram

— As on the previous slide, we could instead use a success tree

Failure
Bl
A C D
B2
System failure if
Pg=Ppg; xPp,=1-Rg
I:)System =1- Rsystem -
(<BD) GB2D 1 - (1 =Py =Pp)1 =Pl -Pp)
A
I.?sAIamos
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Monte Carlo estimation (with uncertainty) of R

1. Assign probability distribution

/D

)
» Los Alamos

of reliability for each block
— Simplest assumption is
that all component )

reliabilities are A
independent

. Draw random sample from

each component,

calculate Rgy¢tem

— If component reliabilities
are dependent, sample
from joint distribution

Frequency

. Repeat (2) n times (e.g., 0

n = 10,000), estimate distribution

of R stem from empirical quantiles
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Equivalent analysis can be done with fault or success tree
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Elicitation and use of probabilities

* |f only point reliability or failure probability estimates are used,
deriving a system reliability estimate by propagation through a
fault/success tree or reliability block diagram is straightforward

» To estimate uncertainty in a complex reliability model (RDB or FT)
we need to estimate a probability distribution over reliability or
failure probability at each node
— Must be supported on [0, 1]
— Characterized in a way that
facilitates setting distribution
parameters based on
expert judgment

— Facilitates combining expert
judgment with test results
using Bayesian methods

20 30 40

Probability density
10
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* Alternative: elicit upper/lower ' ' ' ' I l

00 02 04 06 08 10
~ bounds, use interval analysis
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Combining prior knowledge and test data

* |In the absence of sufficient test data, distribution parameters may be
estimated a priori based on expert judgment or physical models

* These estimates can be used to develop Bayesian prior distributions,
which are updated with available data:

L(p|D)x(p)
[L(pID)7(p)dp

Assume p (failure probability) is the parameter of interest; z(p) is
the prior distribution, L(p| D) is the likelihood function of the data,

and the denominator normalizes the expression to a proper probability
density function (pdf).

* Note the parameter is treated as a random variable; think of this
as epistemic uncertainty.

(Bayes’ theorem)

n(p|D)=

 7(p|D) is the posterior (pdf) for p, used to calculate the posterior
predictive density for future reliability.

» Los Alamos 14
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“Probability of reliability” — Binomial/beta distributions

* Given a constant probability p of failure on one test, the probability
of k failures in n tests is (binomial distribution)

f(kln,p){rk]jpk(l—p)n kv(n—'k)vp (1-p"

 Commonly used prior probability distribution
for p is the beta:

f(pla, )=t P) e
[(e)l(P)
* Conjugate prior for binomial distribution (“conjugate” meaning the
posterior has the same form as the prior)
— Assume prior belief is that « failures would be observed in a + £ tests
— In current data, k failures are observed in n tests
— pdf of posterior distribution is Beta(a + k, S+ n—Kk)

_Dla+k+B+n=K) sikaa,q
el D = rorggen—? 7P

» Los Alamos 15
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Bayesian analysis of binomial failure data

* Elicit beta prior based on expert judgment or historical experience
— Assume prior belief is that « failures would be observed in o + [ tests
— In current data, k failures are observed in n tests
— pdf of posterior distribution is Beta(a + k, 5+ n—k)
INa+k+pB+n-k
f(plaf)= et X PAN
INa+KI'(B+n-k)
* Example (in this case, estimating posterior distribution of p; could
also estimate distribution of R=1 —p)

pa+k—1 (1 . p),B+n—k—1

Prior: Beta(2, 1998), median R = 0.9992

600

=
e . Posterior: Beta(4, 2196), median R = 0.9983
o)
3 \
2 S L Data: 2 failures in 200 tests, median R = 0.9916
o —’—A‘—:"--& |
[_'\7 0.000 0.005 0.010 0015
» Los Alamos Failure probability 16
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Bayesian analysis of binomial failure data

 Alternative elicitation of a Beta prior distribution: prior belief in percentiles
of the reliability distribution uniquely determines Beta parameters*
— “With 90% confidence, | think the reliability should be between
0.95 and 0.9999” (note here we are counting successes, not failures)
— l.e., assuming symmetric confidence interval, 5th percentile is
0.95, 95th percentile is 0.9999
— So prior is Beta(40.68, 0.56)
— If the observed test data is O failures in 50 tests, the posterior is
Beta(90.68, 0.56) — median R = 0.9969 (add 50 to the number of successes)

Prior: Beta(40.68, 0.56)
AN
Data: O failures in 50 tests
~
Posterior: Beta(90.7, 0.56)

500
|

Probability density
300
|

)

0 100
|

0.980 0.985 0.990 0.995 1.000
Reliability
/'\
) h?ﬁﬁ@ﬂ?gﬁ *Solving for the Beta parameters requires numerical optimization 17
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Summary

* We presented a reliability analysis framework

* Point estimates of reliability using reliability block diagrams, fault
trees, success trees

e Estimates with uncertainty using expert elicitation, Monte Carlo
simulation, Bayesian analysis

* Expert elicitation of failure modes and probabilities is labor-
intensive, but critical

* Bayesian analysis updates information from expert elicitation
with data from reliability and aging tests (aging/compatibility
data are needed to estimate lower-bound reliabilities at end of
life)

* Estimation by more than one method helps insure consistency
and accuracy
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